- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程的概念
- 曲线的交点问题
- + 轨迹问题
- 求平面轨迹方程
- 立体几何中的轨迹问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一种作图工具如图1所示.
是滑槽
的中点,短杆
可绕
转动,长杆
通过
处铰链与
连接,
上的栓子
可沿滑槽AB滑动,且
,
.当栓子
在滑槽AB内作往复运动时,带动
绕
转动一周(
不动时,
也不动),
处的笔尖画出的曲线记为
.以
为原点,
所在的直线为
轴建立如图2所示的平面直角坐标系.

(Ⅰ)求曲线C的方程;
(Ⅱ)设动直线
与两定直线
和
分别交于
两点.若直线
总与曲线
有且只有一个公共点,试探究:
的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.






















(Ⅰ)求曲线C的方程;
(Ⅱ)设动直线







棱长为1的正方体ABCD﹣A1B1C1D1中,E是侧面ADD1A1内的动点,且B1E∥平面BDC1,则点E在侧面ADD1A1内的轨迹长度为( )


A.![]() | B.1 | C.![]() | D.![]() |
和平面解析几何的观点相同,在空间中,空间平面和曲面可以看作是适合某种条件的动点的轨迹,在空间直角坐标系
中,空间平面和曲面的方程是一个三原方程
.
(1)类比平面解析几何中直线的方程,写出①过点
,法向量为
的平面的点法式方程;②平面的一般方程;③在
,
,
轴上的截距分别为
,
,
的平面的截距式方程.(不需要说明理由)
(2)设
、
为空间中的两个定点,
,我们将曲面
定义为满足
的动点
的轨迹,试建立一个适当的空间直角坐标系
,求曲面
的方程.
(3)对(2)中的曲面
,指出和证明曲面
的对称性,并画出曲面
的直观图.


(1)类比平面解析几何中直线的方程,写出①过点








(2)设








(3)对(2)中的曲面


