- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 曲线与方程的概念
- 曲线的交点问题
- + 轨迹问题
- 求平面轨迹方程
- 立体几何中的轨迹问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
与
轴交于两点
,与
轴的一个交点为
,△
的面积为2.
(Ⅰ)求椭圆
的方程及离心率;
(Ⅱ)在
轴右侧且平行于
轴的直线
与椭圆
交于不同的两点
,直线
与直线
交于点
.以原点
为圆心,以
为半径的圆与
轴交于
两点(点
在点
的左侧),求
的值.






(Ⅰ)求椭圆

(Ⅱ)在















圆O:x2+y2=9上的动点P在x轴、y轴上的射影分别是P1,P2,点M满足
.
(1)求点M的轨迹C的方程;
(2)点A(0,1),B(0,﹣3),过点B的直线与轨迹C交于点S,N,且直线AS、AN的斜率kAS,kAN存在,求证:kAS•kAN为常数.

(1)求点M的轨迹C的方程;
(2)点A(0,1),B(0,﹣3),过点B的直线与轨迹C交于点S,N,且直线AS、AN的斜率kAS,kAN存在,求证:kAS•kAN为常数.
如图,在三棱柱
中,点
在平面
内运动,使得二面角
的平面角与二面角
的平面角互余,则点
的轨迹是( )








A.一段圆弧 | B.椭圆的一部分 |
C.抛物线 | D.双曲线的一支 |
已知定圆
:
,点
是圆
所在平面内一定点,点
是圆
上的动点,若线段
的中垂线交直线
于点
,则点
的轨迹可能是:①椭圆;②双曲线;③拋物线;④圆;⑤直线;⑥一个点.其中所有可能的结果的序号为___.










椭圆
:
,其长轴是短轴的两倍,以某短轴顶点和长轴顶点为端点的线段作为直径的圆的周长为
,直线
与椭圆交于
,
两点.
(1)求椭圆
的方程;
(2)过点
作直线
的垂线,垂足为
.若
,求点
的轨迹方程;
(3)设直线
,
,
的斜率分别为
,
,
,其中
且
.设
的面积为
.以
、
为直径的圆的面积分别为
,
,求
的取值范围.






(1)求椭圆

(2)过点





(3)设直线















给定正三棱锥P﹣ABC,M点为底面正三角形ABC内(含边界)一点,且M到三个侧面PAB、PBC、PAC的距离依次成等差数列,则点M的轨迹为( )
A.双曲线的一部分 | B.圆的一部分 | C.一条线段 | D.抛物线的一部分 |
如图,
是平面
的斜线段,
为斜足,点
满足
,且在平面
内运动,则( )








A.当![]() ![]() |
B.当![]() ![]() |
C.当![]() ![]() |
D.当![]() ![]() |
已知点
到抛物线
的焦点
的距离和它到直线
的距离之比是
.
(1)求点
的轨迹
的方程;
(2)过圆
:
上任意一点
作圆的切线
与轨迹
交于
,
两点,求证:
.





(1)求点


(2)过圆








如图,在圆
上任取一点
,过点
作
轴的垂线段
,
为垂足. 当点
在圆上运动时,满足
的动点
的轨迹是椭圆,求这个椭圆离心率的取值范围( )












A.![]() | B.![]() | C.![]() | D.![]() |