- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 曲线与方程
- 曲线与方程的概念
- 曲线的交点问题
- 轨迹问题
- 椭圆
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对于双曲线
,定义
为其伴随曲线,记双曲线
的左、右顶点为
、
.
(1)当
时,记双曲线
的半焦距为
,其伴随椭圆
的半焦距为
,若
,求双曲线
的渐近线方程.
(2)若双曲线
的方程为
,弦
轴,记直线
与直线
的交点为
,求其动点
的轨迹方程.
(3)过双曲线
的左焦点
,且斜率为
的直线
与双曲线
交于
两点,求证:对任意的
,在伴随曲线
上总存在点
,使得
.





(1)当







(2)若双曲线







(3)过双曲线










一种作图工具如图1所示.
是滑槽
的中点,短杆
可绕
转动,长杆
通过
处铰链与
连接,
上的栓子
可沿滑槽AB滑动,且
,
.当栓子
在滑槽AB内作往复运动时,带动
绕
转动一周(
不动时,
也不动),
处的笔尖画出的曲线记为
.以
为原点,
所在的直线为
轴建立如图2所示的平面直角坐标系.

(Ⅰ)求曲线C的方程;
(Ⅱ)设动直线
与两定直线
和
分别交于
两点.若直线
总与曲线
有且只有一个公共点,试探究:
的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.






















(Ⅰ)求曲线C的方程;
(Ⅱ)设动直线







棱长为1的正方体ABCD﹣A1B1C1D1中,E是侧面ADD1A1内的动点,且B1E∥平面BDC1,则点E在侧面ADD1A1内的轨迹长度为( )


A.![]() | B.1 | C.![]() | D.![]() |