- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- + 圆锥曲线
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
:
内有一点
,过
的两条直线
,
分别与抛物线
交于
,
和
,
两点,且满足
,
,已知线段
的中点为
,直线
的斜率为
.

(1)求证:点
的横坐标为定值;
(2)如果
,点
的纵坐标小于3,求
的面积的最大值.


















(1)求证:点

(2)如果



已知椭圆
两焦点分别为
是椭圆在第一象限弧上一点,并满足
,过P作倾斜角互补的两条直线
分别交椭圆于
两点.

(1)求
点坐标;
(2)求证:直线
的斜率为定值;
(3)求
面积的最大值.






(1)求

(2)求证:直线

(3)求

已知过抛物线
的焦点
的直线与抛物线交于
两点,且
,抛物线的准线
与
轴交于
,
于点
,且四边形
的面积为
,过
的直线
交抛物线于
两点,且
,点
为线段
的垂直平分线与
轴的交点,则点
的横坐标
的取值范围为( )




















A.![]() | B.![]() | C.![]() | D.![]() |
抛物线
的焦点为
上任一点
在
轴上的射影为
中点为
,
.
(1)求动点
的轨迹
的方程;
(2)直线
过
与
从下到上依次交于
,与
交于
,直线
过
与
从下到上依次交于
,与
交于
,
,
的斜率之积为
,设
的面积分别为
,是否存在
使得
成等比数列?若存在,求
的值;若不存在,说明理由.







(1)求动点


(2)直线




















如图,过抛物线
(
)上一点
,作两条直线分别交抛物线于点
,
,若
与
的斜率满足
.

(1)证明:直线
的斜率为定值,并求出该定值;
(2)若直线
在
轴上的截距
,求
面积的最大值.









(1)证明:直线

(2)若直线




已知抛物线
的焦点
与椭圆
的右焦点重合,抛物线
的动弦
过点
,过点
且垂直于弦
的直线交抛物线的准线于点
.
(Ⅰ)求抛物线的标准方程;
(Ⅱ)求
的最小值.









(Ⅰ)求抛物线的标准方程;
(Ⅱ)求
