- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- + 圆锥曲线
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设抛物线的顶点在坐标原点,焦点
在
轴上,过点
的直线交抛物线于
两点,线段
的长度为8,
的中点到
轴的距离为3.
(1)求抛物线的标准方程;
(2)设直线
在
轴上的截距为6,且抛物线交于
两点,连结
并延长交抛物线的准线于点
,当直线
恰与抛物线相切时,求直线
的方程.







(1)求抛物线的标准方程;
(2)设直线







已知抛物线
的准线为
,焦点为
,
为坐标原点.
(1)求过点
,且与
相切的圆的方程;
(2)过
的直线交抛物线
于
两点,
关于
轴的对称点为
,求证:直线
过定点.




(1)求过点


(2)过







已知以抛物线
的顶点和焦点之间的距离为直径的圆的面积为
,过点
的直线
与抛物线只有一个公共点,则焦点到直线
的距离为( )





A.![]() | B.![]() | C.![]() ![]() ![]() | D.![]() ![]() |
如图,抛物线
:
与圆
:
相交于
,
两点,且点
的横坐标为
.过劣弧
上动点
作圆
的切线交抛物线
于
,
两点,分别以
,
为切点作抛物线
的切线
,
,
与
相交于点
.

(Ⅰ)求
的值;
(Ⅱ)求动点
的轨迹方程.























(Ⅰ)求

(Ⅱ)求动点
