- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- + 圆锥曲线
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
过抛物线y2=2px(p>0)的焦点F的直线与抛物线相交于M、N两点,自M、N向准线l作垂线,垂足分别为M1、N1.
(1)求
;
(2)记△FMM1、△FM1N1、△FNN1的面积分别为
、
、
,求
(1)求

(2)记△FMM1、△FM1N1、△FNN1的面积分别为




已知抛物线C:
的焦点是F,准线是l,
(Ⅰ)写出F的坐标和l的方程;
(Ⅱ)已知点P(9,6),若过F的直线交抛物线C于不同两点A,B(均与P不重合),直线PA,PB分别交l于点M,N.求证:MF⊥NF.

(Ⅰ)写出F的坐标和l的方程;
(Ⅱ)已知点P(9,6),若过F的直线交抛物线C于不同两点A,B(均与P不重合),直线PA,PB分别交l于点M,N.求证:MF⊥NF.

在平面直角坐标系
中,已知点F为抛物线
的焦点,点A在抛物线E上,
点B在x轴上,且
是边长为2的等边三角形.
(1)求抛物线E的方程;
(2)设C是抛物线E上的动点,直线
为抛物线E在点C处的切线,求点B到直线
距离的最小值,并求此时点C的坐标.


点B在x轴上,且

(1)求抛物线E的方程;
(2)设C是抛物线E上的动点,直线


