- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 圆的方程
- 圆的标准方程
- 圆的一般方程
- 点与圆的位置关系
- 圆的几何性质
- 直线与圆的位置关系
- 圆与圆的位置关系
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知圆C:x2+y2﹣4x﹣6y+12=0,点A(3,5).
(1)将圆C的方程化为标准方程,并写出圆C的圆心坐标及半径r;
(2)求过点A的圆的切线方程.
(1)将圆C的方程化为标准方程,并写出圆C的圆心坐标及半径r;
(2)求过点A的圆的切线方程.
在平面直角坐标系
中,直线
:
,圆
的圆心在直线
上,半径为2.
(1)若圆
被
轴截得的弦长为
,求圆
的方程;
(2)已知
,圆
上存在点
,使得
,求圆心
横坐标的取值范围.





(1)若圆




(2)已知





瑞士数学家欧拉(LeonhardEuler)1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知
的顶点
,
,其欧拉线方程为
,则顶点
的坐标可以是( )





A.![]() | B.![]() | C.![]() | D.![]() |