- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间向量的有关概念
- 空间共线向量定理
- 空间共面向量定理
- 空间向量的数乘运算
- + 空间向量的数量积运算
- 空间向量数量积的概念辨析
- 求空间向量的数量积
- 空间向量数量积的应用
- 空间向量的正交分解与坐标表示
- 空间向量运算的坐标表示
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,正方体ABCD-A1B1C1D1的棱长为a,M为BD1的中点,N在A1C1上,且满足|A1N|=3|NC1|.

(1)求MN的长;
(2)试判断△MNC的形状.

(1)求MN的长;
(2)试判断△MNC的形状.
如图,在四棱锥S-ABCD中,SA⊥平面ABCD,底面ABCD为直角梯形,AD∥BC,∠BAD=90°,且AB=4,SA=3,E、F分别为线段BC、SB上的一点(端点除外),满足=λ,则当实数λ的值为