- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 线面垂直的判定
- 点面距离
- 线面距离
- 面面距离
- 线面角
- 面面垂直的判定
- 二面角
- 线面垂直的性质
- + 面面垂直的性质
- 面面垂直证线面垂直
- 空间垂直的转化
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在三棱锥P-ABC中,平面PAC⊥平面ABC,∠PCA=90°,△ABC是边长为4的正三角形,PC=4,M是AB边上的一动点,则PM的最小值为 ( )
A.2![]() | B.![]() | C.4![]() | D.4![]() |
如图所示,三棱锥
的底面在平面
内,且
,平面
平面
,点
是定点,则动点
的轨迹是( )









A.一条线段 | B.一条直线 | C.一个圆 | D.一个圆,但要去掉两个点 |
如图,在多面体
中,底面
是边长为
的菱形,
,四边形
是矩形,平面
平面
,
,
是
的中点.

(1)求证:
平面
;
(2)求直线
与平面
所成角的正弦值;
(3)求二面角
的大小.











(1)求证:


(2)求直线


(3)求二面角

在空间四边形ABCD中,AB=BC,AD=CD,E为对角线AC的中点,下列判断正确的是( )
A.平面ABD⊥平面BDC | B.平面ABC⊥平面ABD |
C.平面ABC⊥平面ADC | D.平面ABC⊥平面BED |
已知四棱锥
,底面
为菱形,
为
上的点,过
的平面分别交
于点
,且
平面
.
(1)证明:
;
(2)当
为
的中点,
,
与平面
所成的角为
,求平面AMHN与平面ABCD所成锐二面角的余弦值.









(1)证明:

(2)当







如图,在等腰三角形ABC中,AB=AC,∠A=120°,M为线段BC的中点,D为线段BC上一点,且BD=BA,沿直线AD将△ADC翻折至△ADC′,使AC′⊥BD.
(Ⅰ)证明:平面AMC′⊥平面ABD;
(Ⅱ)求直线C′D与平面ABD所成的角的正弦值.
(Ⅰ)证明:平面AMC′⊥平面ABD;
(Ⅱ)求直线C′D与平面ABD所成的角的正弦值.
