- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 线面垂直证明线线平行
- + 线面垂直证明线线垂直
- 线面垂直证明面面平行
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,四棱锥
中,底面
是直角梯形,
∥
,
,
,侧面
⊥底面
,且
是以
为底的等腰三角形.

(1)证明:
⊥
;
(2)若三棱锥
的体积等于
,问:是否存在过点
的平面
,分别交
、
于点
,使得平面
∥平面
?若存在,求出
的面积;若不存在,请说明理由.












(1)证明:


(2)若三棱锥










如图,正四棱锥S-ABCD的底面是边长为
正方形,O为底面对角线交点,侧棱长是底面边长的
倍,P为侧棱SD上的点.
.
(Ⅰ)求证:AC⊥SD
(Ⅱ)若SD⊥平面PAC,
为
中点,求证:
∥平面PAC;
(Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E, 使得BE∥平面PA


.

(Ⅰ)求证:AC⊥SD
(Ⅱ)若SD⊥平面PAC,



(Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E, 使得BE∥平面PA
A.若存在,求SE:EC的值;若不存在,试说明理由. |
如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,AB=5,点
是
的中点.
(I)求证:
;
(II)求证:
//平面
.


(I)求证:

(II)求证:



如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90
,M为AB的中点.

(1)求证:BC//平面PMD;
(2)求证:PC⊥BC;
(3)求点A到平面PBC的距离.


(1)求证:BC//平面PMD;
(2)求证:PC⊥BC;
(3)求点A到平面PBC的距离.