- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- + 二面角的概念及辨析
- 求二面角
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知四边形
中,
,
,在将
沿着
翻折成三棱锥
的过程中,直线
与平面
所成角的角均小于直线
与平面
所成的角,设二面角
,
的大小分别为
,则( )













A.![]() | B.![]() | C.存在![]() | D.![]() |
如图,在四棱锥
中,
平面
.底面
是菱形,
.

(Ⅰ)求证:直线
平面
;
(Ⅱ)求直线
与平面
所成角的正切值;
(Ⅲ)已知
在线段
上,且
,求二面角
的余弦值.






(Ⅰ)求证:直线


(Ⅱ)求直线


(Ⅲ)已知




已知三棱锥
的底面
是等边三角形,点
在平面
上的射影在
内(不包括边界),
.记
,
与底面所成角为
,
;二面角
,
的平面角为
,
,则
,
,
,
之间的大小关系等确定的是()


















A.![]() | B.![]() |
C.![]() ![]() | D.只能确定![]() ![]() |
如图,二面角
中,
,射线
,
分别在平面
,
内,点A在平面
内的射影恰好是点B,设二面角
、
与平面
所成角、
与平面
所成角的大小分别为
,则( )















A.![]() | B.![]() | C.![]() | D.![]() |
如图,在四面体A﹣BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2
.M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.
(1)证明:PQ∥平面BCD;
(2)若二面角C﹣BM﹣D的大小为60°,求∠BDC的大小.

(1)证明:PQ∥平面BCD;
(2)若二面角C﹣BM﹣D的大小为60°,求∠BDC的大小.

已知矩形
中,
,
,点
在
上且
,如图(1).把
沿
向上折起到
的位置,使二面角
的大小为
,如图(2).

(Ⅰ)求四棱锥
的体积;
(Ⅱ)求
与平面
所成角的正切值;
(Ⅲ)设
为
的中点,是否存在棱
上的点
,使
平面
?若存在,试求出
点位置;若不存在,请说明理由.












(Ⅰ)求四棱锥

(Ⅱ)求


(Ⅲ)设







如图,在四棱锥
中,底面
为直角梯形,
,
,平面
底面ABCD,Q为AD的中点,M是棱
上的点,
(Ⅰ)若
是棱
的中点,求证:
;
(Ⅱ)若二面角
的大小为
,试求
的值.







(Ⅰ)若



(Ⅱ)若二面角



