- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 判断面面是否垂直
- + 证明面面垂直
- 补全面面垂直的条件
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,三棱柱
的侧面
是正方形,平面
平面
,
,
,点
在
上,
,
是
的中点.

(Ⅰ)求证:
平面
;
(Ⅱ)判断平面
与平面
是否垂直,直接写出结论,不必说明理由;
(Ⅲ)求二面角
的余弦值.












(Ⅰ)求证:


(Ⅱ)判断平面


(Ⅲ)求二面角

在三棱锥
中,AB⊥平面BCD,∠BCD=90°,E、F分别是AC、AD上的点,且
.
(1)求证:平面BEF⊥平面ABC;
(2)若平面BEF⊥平面ACD,求证: BE⊥AC.


(1)求证:平面BEF⊥平面ABC;
(2)若平面BEF⊥平面ACD,求证: BE⊥AC.

如图,在四棱锥P-ABCD中,底面ABCD是矩形,
,BC=1,
,PD=CD=2.
(I)求异面直线PA与BC所成角的正切值;
(II)证明平面PDC⊥平面ABCD;
(III)求直线PB与平面ABCD所成角的正弦值.

(考点定位)本小题主要考查异面直线所成的角、平面与平面垂直、直线与平面所成的角等基础知识.,考查空间想象能力、运算求解能力和推理论证能力.


(I)求异面直线PA与BC所成角的正切值;
(II)证明平面PDC⊥平面ABCD;
(III)求直线PB与平面ABCD所成角的正弦值.

(考点定位)本小题主要考查异面直线所成的角、平面与平面垂直、直线与平面所成的角等基础知识.,考查空间想象能力、运算求解能力和推理论证能力.