- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- + 线面平行的判定
- 判断线面平行
- 证明线面平行
- 补全线面平行的条件
- 面面平行的判定
- 线面平行的性质
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在四棱锥P﹣ABCD中,四边形ABCD是菱形,
,BD=2.

(1)若点E,F分别为线段PD,BC上的中点,求证:EF∥平面PAB;
(2)若平面PBD⊥平面ABCD,且PD⊥PB,PD=PB,求平面PAB与平面PBC所成的锐二面角的余弦值.


(1)若点E,F分别为线段PD,BC上的中点,求证:EF∥平面PAB;
(2)若平面PBD⊥平面ABCD,且PD⊥PB,PD=PB,求平面PAB与平面PBC所成的锐二面角的余弦值.
我国古代数学名著《九章算术》中记载的“刍甍”是底面为矩形,顶部只有一条棱的五面体.如图,五面体
是一个“刍甍”,四边形
为矩形,
与
都是正三角形,
,
.

求证:
面
;
求直线
与平面
所成角的正弦值.













如图,四棱锥P-ABCD中,底面ABCD为菱形,
底面ABCD,
,
,E、F分别是PC和AB的中点.
(1)证明:
平面PAD;
(2)若
,求PD与平面PBC所成角的正弦值.



(1)证明:

(2)若


如图所示,已知等腰直角三角形RBC,其中∠RBC=90°,RB=BC=2.点A,D分别是RB,RC的中点,现将△RAD沿着边AD折起到PAD位置,使PA⊥AB,连接PB,P
A.![]() (1)求证:AD∥面PBC; (2)求二面角A-CD-P的余弦值. |