- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- + 线面平行的判定
- 判断线面平行
- 证明线面平行
- 补全线面平行的条件
- 面面平行的判定
- 线面平行的性质
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图①,△ABC是以AC为斜边的等腰直角三角形,△BCD是等边三角形.如图②,将△BCD沿BC折起,使平面BCD⊥平面ABC,记BC的中点为E,BD的中点为M,点F、N在棱AC上,且AF=3CF,C
.

(1)试过直线MN作一平面,使它与平面DEF平行,并加以证明;
(2)记(1)中所作的平面为α,求平面α与平面BMN所成锐二面角的余弦值.


(1)试过直线MN作一平面,使它与平面DEF平行,并加以证明;
(2)记(1)中所作的平面为α,求平面α与平面BMN所成锐二面角的余弦值.
如图,点
为正方形边
上异于点
的动点,将
沿
翻折成
,使得平面
平面
,则下列说法中正确的是__________.(填序号)

(1)在平面
内存在直线与
平行;
(2)在平面
内存在直线与
垂直
(3)存在点
使得直线
平面
(4)平面
内存在直线与平面
平行.
(5)存在点
使得直线
平面









(1)在平面


(2)在平面


(3)存在点



(4)平面


(5)存在点



如图,在多面体ABCDEF中,四边形ABCD为平行四边形,平面ADE⊥平面CDEF,∠ADE=60°,DE∥CF,CD⊥DE,AD=2,DE=DC=3,CF=4,点G是棱CF上的动点.
(Ⅰ)当CG=3时,求证EG∥平面ABF;
(Ⅱ)求直线BE与平面ABCD所成角的正弦值;
(Ⅲ)若二面角G﹣AE﹣D所成角的余弦值为
,求线段CG的长.
(Ⅰ)当CG=3时,求证EG∥平面ABF;
(Ⅱ)求直线BE与平面ABCD所成角的正弦值;
(Ⅲ)若二面角G﹣AE﹣D所成角的余弦值为


如图所示,四棱锥P﹣ABCD的底面是边长为2的正方形,平面PAD⊥平面ABCD,PA⊥AD,∠PDA=45°,E,F分别为AB,PC的中点.

(1)证明:EF∥平面PAD;
(2)在线段BC上是否存在一点H,使平面PAH⊥平面DEF?若存在,求此时二面角C﹣HD﹣P的平面角的正切值:若不存在,说明理由.

(1)证明:EF∥平面PAD;
(2)在线段BC上是否存在一点H,使平面PAH⊥平面DEF?若存在,求此时二面角C﹣HD﹣P的平面角的正切值:若不存在,说明理由.
如图,矩形
所在平面与等边
所在平面互相垂直,
,
分别为
,
的中点.

(1)求证:
平面
.
(2)试问:在线段
上是否存在一点
,使得平面
平面
?若存在,试指出点
的位置,并证明你的结论:若不存在,请说明理由.







(1)求证:


(2)试问:在线段




