- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间点、直线、平面之间的位置关系
- + 直线、平面平行的判定与性质
- 线面平行的判定
- 面面平行的判定
- 线面平行的性质
- 直线、平面垂直的判定与性质
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在平面四边形
中(图1),
为
的中点,
,且
,现将此平面四边形沿
折起,使得二面角
为直二面角,得到一个多面体,
为平面
内一点,且
为正方形(图2),
分别为
的中点.


(1)求证:平面
//平面
;
(2)在线段
上是否存在一点
,使得平面
与平面
所成二面角的余弦值为
?若存在,求出线段
的长,若不存在,请说明理由.














(1)求证:平面


(2)在线段






如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,∠ABC=∠BAD=90°,AD>BC.E,F分别为棱AB,PC上的点.

(1)求证:平面AFD⊥平面PAB;
(2)若点E满足
,当F满足什么条件时,EF∥平面PAD?请给出证明.

(1)求证:平面AFD⊥平面PAB;
(2)若点E满足

如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.
(2)AD⊥AC.
(2)AD⊥AC.
如图,在四棱锥
中,底面
为正方形,平面
平面
,点
在线段
上,
平面
,
,
.

(1)求证:
为
的中点;
(2)求二面角
的大小;
(3)求直线
与平面
所成角的正弦值.











(1)求证:


(2)求二面角

(3)求直线

