刷题首页
题库
高中数学
题干
在平面四边形
中(图1),
为
的中点,
,且
,现将此平面四边形沿
折起,使得二面角
为直二面角,得到一个多面体,
为平面
内一点,且
为正方形(图2),
分别为
的中点.
(1)求证:平面
//平面
;
(2)在线段
上是否存在一点
,使得平面
与平面
所成二面角的余弦值为
?若存在,求出线段
的长,若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-26 06:11:23
答案(点此获取答案解析)
同类题1
如图甲所示,
是梯形
的高,
,
,
,先将梯形
沿
折起如图乙所示的四棱锥
,使得
.
(1)在棱
上是否存在一点
,使得
平面
?若存在,请求出
的值,若不存在,请说明理由;
(2)点
是线段
上一动点,当直线
与
所成的角最小时,求二面角
的余弦值.
同类题2
如图,四边形
ABCD
是平行四边形,点
E
,
F
,
G
分别为线段
BC
,
PB
,
AD
的中点.
(1)证明:
EF
∥平面
PAC
;
(2)证明:平面
PCG
∥平面
AEF
;
(3)在线段
BD
上找一点
H
,使得
FH
∥平面
PCG
,并说明理由.
同类题3
已知四棱锥
中,底面
为平行四边形,点
、
、
分别在
、
、
上.
(1)若
,求证:平面
平面
;
(2)若
满足
,则
点满足什么条件时,
面
.
同类题4
如图,在正方体
中,
、
、
分别是
、
、
的中点.
(1)求证:
;
(2)求证:平面
平面
.
同类题5
如图所示,三棱台
中,
,
分别为AC,CB的中点.
(1)求证:平面
;
(2)若
,
,求证:平面
平面
.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面平行的判定与性质
面面平行的判定
证明面面平行