- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间点、直线、平面之间的位置关系
- + 直线、平面平行的判定与性质
- 线面平行的判定
- 面面平行的判定
- 线面平行的性质
- 直线、平面垂直的判定与性质
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图在直三棱柱ABC A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=
A.![]() (1)求证:DE∥平面AA1C1C; (2) 求证:BC1⊥AB1; (3)设AC=BC=CC1 =1,求锐二面角A- B1C- A1的余弦值. |
如图所示,在正三棱柱ABC-A1B1C1中,已知D,E分别为BC,B1C1的中点,点F在棱CC1上,且EF⊥C1
(1)直线A1E∥平面ADC1;
(2)直线EF⊥平面ADC1.
A.求证: |
(2)直线EF⊥平面ADC1.

如图所示多面体
,其底面
为矩形且
,
,四边形
为平行四边形,点
在底面
内的投影恰好是
的中点.

(1)已知
为线段
的中点,证明:
∥平面
;
(2)若二面角
大小为
,求直线
与平面
所成角的正弦值.









(1)已知




(2)若二面角




如图,三棱柱
的侧面
是平行四边形,
,平面
平面
,且
分别是
的中点.

(Ⅰ)求证:
;
(Ⅱ)求证:
平面
;
(Ⅲ)在线段
上是否存在点
,使得
平面
?若存在,求出
的值;若不存在,请说明理由.








(Ⅰ)求证:

(Ⅱ)求证:


(Ⅲ)在线段





如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠DAB=60°,PD=4,M为PD的中点,E为AM的中点,点F在线段PB上,且PF=3FB.
(Ⅰ)求证EF∥平面ABCD;
(Ⅱ)若平面PDC⊥底面ABCD,且PD⊥DC,求平面PAD与平面PBC所成锐二面角的余弦值.
(Ⅰ)求证EF∥平面ABCD;
(Ⅱ)若平面PDC⊥底面ABCD,且PD⊥DC,求平面PAD与平面PBC所成锐二面角的余弦值.
