- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间点、直线、平面之间的位置关系
- + 直线、平面平行的判定与性质
- 线面平行的判定
- 面面平行的判定
- 线面平行的性质
- 直线、平面垂直的判定与性质
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(江西省重点中学协作体2018届高三下学期第一次联考)如图,四棱锥
中,
,底面
是梯形,AB∥CD,
,AB=PD=4,CD=2,
,M为CD的中点,N为PB上一点,且
.

(1)若
MN∥平面PAD;
(2)若直线AN与平面PBC所成角的正弦值为
,求异面直线AD与直线CN所成角的余弦值.







(1)若

(2)若直线AN与平面PBC所成角的正弦值为

如图,已知
与
分别是边长为1与2的正三角形,
,四边形
为直角梯形,且
,
,点
为
的重心,
为
中点,
平面
,
为线段
上靠近点
的三等分点.
(1)求证:
平面
;
(2)若二面角
的余弦值为
,试求异面直线
与
所成角的余弦值.















(1)求证:


(2)若二面角





如图,
且AD=2BC,
,
且EG=AD,
且CD=2FG,
,DA=DC=DG=2.
(I)若M为CF的中点,N为EG的中点,求证:
;
(II)求二面角
的正弦值;
(III)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.





(I)若M为CF的中点,N为EG的中点,求证:

(II)求二面角

(III)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.
