- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间点、直线、平面之间的位置关系
- + 直线、平面平行的判定与性质
- 线面平行的判定
- 面面平行的判定
- 线面平行的性质
- 直线、平面垂直的判定与性质
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知四棱锥
中,
平面
,底面
是边长为
的正方形,
,
为
中点,
为
上一点,且
.

(1)求证:
平面
;
(2)设
与
交于点
,
为
的中点,若点
到平面
的距离为
,求
的值.












(1)求证:


(2)设









(2017·泰安模拟)如图,在正四棱柱ABCDA1B1C1D1中,E为AD的中点,F为B1C1的中点.
(1)求证:A1F∥平面ECC1;
(2)在CD上是否存在一点G,使BG⊥平面ECC1?若存在,请确定点G的位置,并证明你的结论,若不存在,请说明理由.
(1)求证:A1F∥平面ECC1;
(2)在CD上是否存在一点G,使BG⊥平面ECC1?若存在,请确定点G的位置,并证明你的结论,若不存在,请说明理由.
如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠ABC=60°,
为正三角形,且侧面PAB⊥底面ABCD,
为线段
的中点,
在线段
上.

(I)当
是线段
的中点时,求证:PB // 平面ACM;
(II)求证:
;
(III)是否存在点
,使二面角
的大小为60°,若存在,求出
的值;若不存在,请说明理由.






(I)当


(II)求证:

(III)是否存在点



如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,
为正三角形,且侧面PAB⊥底面ABCD. E,M分别为线段AB,PD的中点.

(I)求证:PE⊥平面ABCD;
(II)求证:PB//平面ACM;
(III)在棱CD上是否存在点G,使平面GAM⊥平面ABCD,请说明理由.


(I)求证:PE⊥平面ABCD;
(II)求证:PB//平面ACM;
(III)在棱CD上是否存在点G,使平面GAM⊥平面ABCD,请说明理由.