- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 异面直线所成的角的概念及辨析
- + 证明异面直线垂直
- 求异面直线所成的角
- 由异面直线所成的角求其他量
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分12分)
已知斜三棱柱ABC—A1B1C1的底面是正三角形,侧面ABB1A1是菱形,且
, M是A1B1的中点,

(1)求证:
平面ABC;
(2)求二面角A1—BB1—C的余弦值。
已知斜三棱柱ABC—A1B1C1的底面是正三角形,侧面ABB1A1是菱形,且



(1)求证:

(2)求二面角A1—BB1—C的余弦值。
如图,在四棱椎P-ABCD中,底面ABCD是边长为
的正方形,且PD=
,PA=PC=
.
(1)求证:直线PD⊥面ABCD;
(2)求二面角A-PB-D的大小.



(1)求证:直线PD⊥面ABCD;
(2)求二面角A-PB-D的大小.

如图(1)所示,在正方形SG1G2G3中,E,F分别是G1G2及G2G3的中点,D是EF的中点,现在沿SE,SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G,如图(2)所示,那么,在四面体S-EFG中必有( )


A.SG⊥△EFG所在平面 |
B.SD⊥△EFG所在平面 |
C.GF⊥△SEF所在平面 |
D.GD⊥△SEF所在平面 |
如图,PA垂直于圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E, F分别是点A在P B, P C上的射影,给出下列结论:
①
;②
;③
;④
.正确命题的个数为()

①





A.1 | B.2 | C.3 | D.4 |
(如图1)在平面四边形
中,
为
中点,
,
,且
,现沿
折起使
,得到立体图形(如图2),又B为平面ADC内一点,并且ABCD为正方形,设F,G,H分别为PB,EB,PC的中点.

(1)求三棱锥
的体积;
(2)在线段PC上是否存在一点M,使直线
与直线
所成角为
?若存在,求出线段的长;若不存在,请说明理由.









(1)求三棱锥

(2)在线段PC上是否存在一点M,使直线


