- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 异面直线所成的角的概念及辨析
- + 证明异面直线垂直
- 求异面直线所成的角
- 由异面直线所成的角求其他量
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在底面是菱形的四棱锥P—ABCD中,∠ABC=600,PA=AC=a,PB=PD=
,点E在PD上,且PE:ED=2:1.

(Ⅰ)证明PA⊥平面ABCD;
(Ⅱ)求以AC为棱,EAC与DAC为面的二面角
的大小;
(Ⅲ)在棱PC上是否存在一点F,使BF//平面AEC?证明你的结论.


(Ⅰ)证明PA⊥平面ABCD;
(Ⅱ)求以AC为棱,EAC与DAC为面的二面角

(Ⅲ)在棱PC上是否存在一点F,使BF//平面AEC?证明你的结论.
已知
矩形ABCD所在平面,PA=AD=
,E为线段PD上一点,G为线段PC的中点.

(1)当E为PD的中点时,求证:
(2)当
时,求证:BG//平面AEC.



(1)当E为PD的中点时,求证:

(2)当

如图,直三棱柱ABC-A1B1C1中, AB=AC=AA1,AB⊥AC,M是CC1的中点,N是BC的中点,点P在线段A1B1上运动.
(Ⅰ)求证:PN⊥AM;
(Ⅱ)试确定点P的位置,使直线PN和平面ABC所成的角
最大.
(Ⅰ)求证:PN⊥AM;
(Ⅱ)试确定点P的位置,使直线PN和平面ABC所成的角
最大.

如图,在底面是正方形的四棱锥











(Ⅰ)求证:

(Ⅱ)确定点




(Ⅲ)当二面角




如图,四棱锥P—ABCD的底面是AB=2,BC=
的矩形,侧面PAB
是等边三角形,且侧面PAB⊥底面ABCD
(I)证明:侧面PAB⊥侧面PBC;
(II)求侧棱PC与底面ABCD所成的角;
(III)求直线AB与平面PCD的距离.

是等边三角形,且侧面PAB⊥底面ABCD
(I)证明:侧面PAB⊥侧面PBC;
(II)求侧棱PC与底面ABCD所成的角;
(III)求直线AB与平面PCD的距离.

E、F分别是边长为2的正方形ABCD的边BC、CD的中点,沿AE、EF和FA分别将△ABE、△ECF和△AFD折起,使B、C、D重合为一点G得到一个三棱锥G—AEF,则它的体积为( )
A.![]() | B.![]() | C.![]() | D.1 |