- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- + 球的体积的有关计算
- 球的表面积的有关计算
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
底面是正多边形,顶点在底面的射影是底面中心的棱锥叫做正棱锥.如图,半球内有一内接正四棱锥
,该四棱锥的侧面积为
,则该半球的体积为( )




A.![]() | B.![]() | C.![]() | D.![]() |
圆柱形容器内部盛有高度为
的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是__________
.



我国古代数学名著《九章算术》对立体几何也有深入的研究,从其中的一些数学用语可见,譬如“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,“阳马”指底面为矩形且有一侧棱垂直于底面的四棱锥.现有一如图所示的“堑堵”即三棱柱
,其中
,若
,当“阳马”即四棱锥
体积最大时,“堑堵”即三棱柱
外接球的体积为__________.






已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,.若三棱锥O﹣ABC体积的最大值为
,则球O的表面积为__________ .

《九章算术》中记载了我国古代数学家祖暅在计算球的体积中使用的一个原理:“幂势既同,则积不异”,此即祖暅原理,其含义为:两个同高的几何体,如在等高处的截面的面积恒相等,则它们的体积相等.如图,设满足不等式组
的点
组成的图形(图(1)中的阴影部分)绕
轴旋转
,所得几何体的体积为
;满足不等式组
的点
组成的图形(图(2)中的阴影部分)绕
轴旋转
,所得几何体的体积为
.利用祖暅原理,可得
( )















A.![]() | B.![]() | C.![]() | D.![]() |