- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间几何体的结构
- 空间几何体的三视图和直观图
- + 空间几何体的表面积与体积
- 柱、锥、台的表面积
- 柱、锥、台的体积
- 球的体积和表面积
- 组合体的表面积和体积
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知矩形
的长
,宽
,将其沿对角线
折起,得到四面体
,
如图所示,给出下列结论:
①四面体
体积的最大值为
;
②四面体
外接球的表面积恒为定值;
③若
分别为棱
的中点,则恒有
且
;
④当二面角
为直二面角时,直线
所成角的余弦值为
;
⑤当二面角
的大小为
时,棱
的长为
.

其中正确的结论有____________________(请写出所有正确结论的序号)





如图所示,给出下列结论:
①四面体


②四面体

③若




④当二面角



⑤当二面角





其中正确的结论有____________________(请写出所有正确结论的序号)
祖暅是我国齐梁时代的数学家,他提出了一条原理:“幂势既同,则积不容异”.这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.由椭圆
所围成的平面图形绕y轴旋转一周后,得一如图所示的几何体,称为椭球体.请类比应用祖暅原理求球体体积公式的做法,求出椭球体体积,其体积等于______________.


“牟合方盖”是我国古代数学家刘微在研究球的体积的过程中构造的一个和谐优美的几何体,它由完全相同的四个曲面构成,相对的两个曲面在同一圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).如图,正边形
是为体现其直观性所作的辅助线,若该几何体的正视图与侧视图都是半径为
的圆,根据祖暅原理,可求得该几何体的体积为




A.![]() | B.![]() | C.![]() | D.![]() |