- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间几何体的结构
- 空间几何体的三视图和直观图
- + 空间几何体的表面积与体积
- 柱、锥、台的表面积
- 柱、锥、台的体积
- 球的体积和表面积
- 组合体的表面积和体积
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
的三边长分别为
,
,
,
是
边上的点,
是平面
外一点.给出下列四个命题:
①若
平面
,且
是
边中点,则有
;
②若
,
平面
,则
面积的最小值为
;
③若
,
平面
,则三棱锥
的外接球体积为
;
④若
,
在平面
上的射影是
内切圆的圆心,则三棱锥
的体积为
;
其中正确命题的序号是 (把你认为正确命题的序号都填上).








①若





②若





③若





④若






其中正确命题的序号是 (把你认为正确命题的序号都填上).
如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,PA=2
,BC=CD=2,∠ACB=∠ACD=
.

(1)求证:BD⊥平面PAC;
(2)若侧棱PC上的点F满足PF=7FC,求三棱锥P﹣BDF的体积.



(1)求证:BD⊥平面PAC;
(2)若侧棱PC上的点F满足PF=7FC,求三棱锥P﹣BDF的体积.
如图,已知四棱锥P-ABCD中,底面ABCD是直角梯形,AB//DC,
,
,DC=1,AB=2,
,
(1)求证:BC
平面PAC;
(2)若M是PC的中点,求三棱锥M—ACD的体积。



(1)求证:BC

(2)若M是PC的中点,求三棱锥M—ACD的体积。

在底面半径为3高为
的圆柱形有盖容器内,放入一个半径为3的大球后,再放入与球面,圆柱侧面及上底面均相切的小球,则放入小球的个数最多为__ 个.
