- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 棱柱的结构特征和分类
- 判断几何体是否为棱柱
- 正棱柱及其有关计算
- + 棱柱的展开图及最短距离问题
- 判断正方体的截面形状
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在正方体
中,
、
分别为棱
、
的中点.

(1)求证:
平面
;
(2)求证:平面
⊥平面
;
(3)如果
,一个动点从点
出发在正方体的表面上依次经过棱
、
、
、
、
上的点,最终又回到点
,指出整个路线长度的最小值并说明理由.






(1)求证:


(2)求证:平面


(3)如果








①BM与ED平行; ②CN与BE是异面直线;
③CN与BM成
角; ④DM与BN垂直.
其中,正确命题的序号是_______________________.
③CN与BM成

其中,正确命题的序号是_______________________.

如右图所示,在正三棱柱ABC—A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC1到M的最短路线长为
,设这条最短路线与CC1的交点为N.求:

(1)该三棱柱的侧面展开图的对角线长;
(2)PC和NC的长.


(1)该三棱柱的侧面展开图的对角线长;
(2)PC和NC的长.