- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- + 棱柱
- 棱柱的结构特征和分类
- 判断几何体是否为棱柱
- 正棱柱及其有关计算
- 棱柱的展开图及最短距离问题
- 判断正方体的截面形状
- 棱锥
- 棱台
- 圆柱
- 圆锥
- 圆台
- 球
- 旋转体
- 多面体
- 组合体
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,已知正方体ABCD-A1B1C1D1的棱长为1,E,F分别是棱AD,B1C1上的动点,设AE=λ,B1F=μ.若平面BEF与正方体的截面是五边形,则λ+μ的取值范围是________ . 

给出下列命题:
①棱柱的侧棱都相等,侧面都是全等的平行四边形;②用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台;③若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;④若四棱柱有两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;⑤存在每个面都是直角三角形的四面体;⑥棱台的侧棱延长后交于一点.其中正确命题的序号是
①棱柱的侧棱都相等,侧面都是全等的平行四边形;②用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台;③若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;④若四棱柱有两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;⑤存在每个面都是直角三角形的四面体;⑥棱台的侧棱延长后交于一点.其中正确命题的序号是
A.①②③④ | B.②③④⑤ |
C.③④⑤⑥ | D.①②③④⑤⑥ |
已知长方体ABCD一A1B1C1D1中,AB=3cm,BC=2cm,AA1=2cm,E为CC1的中点,则一质点自点A出发,沿着长方体的表面到达点E的最短路线的长为____ cm
以棱长为1的正方体各面的中心为顶点,构成一个正八面体,再以这个正八面体各面的中心为顶点构成一个小正方体,那么该小正方体的棱长为
A.![]() | B.![]() | C.![]() | D.![]() |
现有一个正四面体与一个正四棱锥,它们的所有棱长都相等.将它们重叠一个侧面后,所得的几何体是( ).
A.四面体 | B.五面体 | C.六面体 | D.七面体 |
正方体
的棱长为
,点
,
,
分别是
、
、
的中点,以
为底面作正三棱柱,若此三棱柱另一底面的三个顶点也都在该正方体的表面上,则这个正三棱柱的高为__________ .









如图,一个封闭的长方体,它的六个表面各标出
这六个字母,现放成下面三种不同的位置,所看见的表面上的字母已表明,则字母
对面的字母依次分别为( )




A.![]() | B.![]() | C.![]() | D.![]() |