- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 倒序相加法求和
- 错位相减法求和
- 裂项相消法求和
- + 分组(并项)法求和
- 数列求和的其他方法
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知数列
的前
项和为
,且
,
(1)求证:数列
为等比数列,并求出数列
的通项公式;
(2)是否存在实数
,对任意
,不等式
恒成立?若存在,求出
的取值范围,若不存在请说明理由.





(1)求证:数列


(2)是否存在实数




已知数列{an}的前n项和为Sn,且对任意正整数n,有3,an,Sn成等差数列.
(1)求证:数列{Sn+3}为等比数列;
(2)设bn=nan﹣n,求数列{bn}的前n项和Tn.
(1)求证:数列{Sn+3}为等比数列;
(2)设bn=nan﹣n,求数列{bn}的前n项和Tn.
设{an}是公比为正数的等比数列a1=2,a3=a2+4.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.