- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 倒序相加法求和
- 错位相减法求和
- 裂项相消法求和
- + 分组(并项)法求和
- 数列求和的其他方法
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知数列
,
为其前n项的和,满足
.
(1)求数列
的通项公式;
(2)设数列
的前n项和为
,数列
的前n项和为
,求证:当
时
;
(3)若函数
的定义域为R,并且
,求证
.



(1)求数列

(2)设数列






(3)若函数



已知各项为正的数列{an}是等比数列,a1=2,a5=32,数列{bn}满足:对于任意n∈N*,有a1b1+a2b2+…+anbn=(n﹣1)•2n+1+2.
(1)求数列{an}的通项公式;
(2)令f(n)=a2+a4+…+a2n,求
的值;
(3)求数列{bn}通项公式,若在数列{an}的任意相邻两项ak与ak+1之间插入bk(k∈N*)后,得到一个新的数列{cn},求数列{cn}的前100项之和T100.
(1)求数列{an}的通项公式;
(2)令f(n)=a2+a4+…+a2n,求

(3)求数列{bn}通项公式,若在数列{an}的任意相邻两项ak与ak+1之间插入bk(k∈N*)后,得到一个新的数列{cn},求数列{cn}的前100项之和T100.
已知函数
(
为常数,
且
),且数列
是首项为
,公差为
的等差数列.
(1)求证:数列
是等比数列;
(2)若
,当
时,求数列
的前
项和
的最小值;
(3)若
,问是否存在实数
,使得
是递增数列?若存在,求出
的范围;若不存在,说明理由.







(1)求证:数列

(2)若





(3)若




某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张,为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少0.5万张,同时规定一旦某年发放的牌照超过15万张,以后每一年发放的电动车的牌照的数量维持在这一年的水平不变.
(1)记2013年为第一年,每年发放的燃油型汽车牌照数量构成数列
,每年发放电动型汽车牌照数为构成数列
,完成下列表格,并写出这两个数列的通项公式;
(2)从2013年算起,累计各年发放的牌照数,哪一年开始超过200万张?
(1)记2013年为第一年,每年发放的燃油型汽车牌照数量构成数列


(2)从2013年算起,累计各年发放的牌照数,哪一年开始超过200万张?
![]() | ![]() | ![]() | ![]() | |
![]() | ![]() | ![]() | ![]() | |
设各项均为正数的数列
的前
项和为
,且对任意
恒有
成立;数列
满足:
,且
.
(1)求
、
的值及数列
的通项公式;
(2)①记
,证明数列
为等比数列;
②若数列
的前
项和为
,求
的值.








(1)求



(2)①记


②若数列



