- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 倒序相加法求和
- 错位相减法求和
- + 裂项相消法求和
- 分组(并项)法求和
- 数列求和的其他方法
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知数列{an}、{bn}满足:a1=
,an+bn=1,bn+1=
.
(1)求a2,a3;
(2)证数列
为等差数列,并求数列{an}和{bn}的通项公式;
(3)设Sn=a1a2+a2a3+a3a4+…+anan+1,求实数λ为何值时4λSn<bn恒成立.


(1)求a2,a3;
(2)证数列

(3)设Sn=a1a2+a2a3+a3a4+…+anan+1,求实数λ为何值时4λSn<bn恒成立.
已知数列
中,
,
,
的前
项和为
,且满足
(
).
(1)试求数列
的通项公式;
(2)令
,
是
的前
项和,证明:
;
(3)证明:对任意给定的
,均存在
,使得
时,(2)中的
恒成立.








(1)试求数列

(2)令





(3)证明:对任意给定的




已知正项数列
的前
项和为
,且
和
满足:
.
(1)求
的通项公式;
(2)设
,求
的前
项和
;
(3)在(2)的条件下,对任意
,
都成立,求整数
的最大值.







(1)求

(2)设




(3)在(2)的条件下,对任意



设
为数列
的前n项和, 且满足
为常数
.
(1)若
,求
的值;
(2)是否存在实数
,使得数列
为等差数列?若存在,求出
的值;若不存在,请说明理由;
(3)当
时,若数列
满足
,且
,令
,求数列
的前n项和
.




(1)若


(2)是否存在实数



(3)当






