- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 写出等比数列的通项公式
- 由定义判定等比数列
- 等比数列通项公式的基本量计算
- + 由递推关系证明等比数列
- 验证是否为等比数列中的项
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
,
为常数,且为正整数,
为质数且大于2,无穷数列
的各项均为正整数,其前n项和为
,对任意正整数
,数列
中任意两不同项的和构成集合A.
(1)证明无穷数列
为等比数列,并求
的值;
(2)如果
,求
的值;
(3)当
,设集合
中元素的个数记为
,求
.








(1)证明无穷数列


(2)如果


(3)当




现有流量均为
的两条河流
汇合于某处后,不断混合,它们的含沙量分别为
和
.假设从汇合处开始,沿岸设有若干个观测点,两股水流在流往相邻两个观测点的过程中,其混合效果相当于两股水流在1秒内交换
的水量,其交换过程为从A股流入B股
的水量,经混合后,又从B股流入A股
水并混合,问从第几个观测点开始,两股河水的含沙量之差小于
.(不考虑泥沙沉淀).








已知数列
为等差数列,且满足
,
,数列
的前
项和为
,且
,
.
(1)求数列
的通项公式;
(2)证明:
是等比数列,并求
的通项公式;
(3)若对任意的
,不等式
恒成立,求实数
的取值范围.








(1)求数列

(2)证明:


(3)若对任意的


