- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 写出等比数列的通项公式
- 由定义判定等比数列
- 等比数列通项公式的基本量计算
- + 由递推关系证明等比数列
- 验证是否为等比数列中的项
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在数列
中,
,
,且
;
(1)设
,证明
是等比数列;(2)求数列
的通项公式;(3)若
是
与
的等差中项,求
的值,并证明:对任意的
,
是
与
的等差中项;




(1)设











设数列
的所有项都是不等于
的正数,
的前
项和为
,已知点
在直线
上(其中常数
,且
)数列,又
.
(1)求证数列
是等比数列;
(2)如果
,求实数
的值;
(3)若果存在
使得点
和
都在直线在
上,是否存在自然数
,当
(
)时,
恒成立?若存在,求出
的最小值;若不存在,请说明理由.










(1)求证数列

(2)如果


(3)若果存在









某地区原有森林木材存有量为
,且每年增长率为
,因生产建设的需要,每年年末要砍伐的木材量为
,设
为第
年末后该地区森林木材存量,则
__________.






设
为数列
的前n项和, 且满足
为常数
.
(1)若
,求
的值;
(2)是否存在实数
,使得数列
为等差数列?若存在,求出
的值;若不存在,请说明理由;
(3)当
时,若数列
满足
,且
,令
,求数列
的前n项和
.




(1)若


(2)是否存在实数



(3)当






