- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 判断等差数列
- 利用定义求等差数列通项公式
- 验证是否为等差数列中的项
- 等差数列通项公式的基本量计算
- + 由递推关系证明数列是等差数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设
数列
的前
项和,对任意
,都有
(
为常数).
(1)当
时,求
;
(2)当
时,
(ⅰ)求证:数列
是等差数列;
(ⅱ)若数列
为递增数列且
,设
,试问是否存在正整数
(其中
),使
成等比数列?若存在,求出所有满足条件的数组
;若不存在,说明理由.






(1)当


(2)当

(ⅰ)求证:数列

(ⅱ)若数列







若无穷数列
满足:对任意两个正整数
,
与
至少有一个成立,则称这个数列为“和谐数列”.
(Ⅰ)求证:若数列
为等差数列,则
为“和谐数列”;
(Ⅱ)求证:若数列
为“和谐数列”,则数列
从第
项起为等差数列;
(Ⅲ)若
是各项均为整数的“和谐数列”,满足
,且存在
使得
,
,求p的所有可能值.





(Ⅰ)求证:若数列


(Ⅱ)求证:若数列



(Ⅲ)若





已知数列
中,
,前
项和为
,且
.
(1)求
,
的值;
(2)证明:数列
是等差数列,并写出其通项公式;
(3)设
(
),试问是否存在正整数
,
(其中
,使得
,
,
成等比数列?若存在,求出所有满足条件的数对
;若不存在,请说明理由.





(1)求


(2)证明:数列

(3)设









在数列
中,
,对任意
,
,
,
成等差数列,其公差为
.
(Ⅰ)若
,证明:
,
,
成等比数列(
)
(Ⅱ)若对任意
,
,
,
成等比数列,其公比为
,
,证明
是等差数列.







(Ⅰ)若





(Ⅱ)若对任意






