- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 判断等差数列
- + 利用定义求等差数列通项公式
- 验证是否为等差数列中的项
- 等差数列通项公式的基本量计算
- 由递推关系证明数列是等差数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知公差不为0的等差数列
的前
项和为
,且
,
是
和
的等比中项.
(1)求数列
的通项公式;
(2)设数列
的前
项和为
,若不等式
对任意的
都成立,求整数k的最小值.







(1)求数列

(2)设数列





正项数列:
,满足:
是公差为
的等差数列,
是公比为2的等比数列.
(1)若
,求数列
的所有项的和
;
(2)若
,求
的最大值;
(3)是否存在正整数
,满足
?若存在,求出
的值;若不存在,请说明理由.




(1)若



(2)若


(3)是否存在正整数


