- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 判断等差数列
- 利用定义求等差数列通项公式
- 验证是否为等差数列中的项
- 等差数列通项公式的基本量计算
- + 由递推关系证明数列是等差数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知二次函数
,数列
的前n项和为
,点
均在函数
的图象上.
Ⅰ
求数列
的通项公式;
Ⅱ
设
,
是数列
的前n项和,求使得
对所有的
都成立的最小正整数m.















数列{
}中,
,
,且满足
,
(1)设
,求
;
(2)设
,
,
,
,是否存在最大的正整数
,使得对任意
均有
成立?若存在求出
的值;若不存在,请说明理由.





(1)设


(2)设







