- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- + 判断等差数列
- 利用定义求等差数列通项公式
- 验证是否为等差数列中的项
- 等差数列通项公式的基本量计算
- 由递推关系证明数列是等差数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设正项数列{an}的前n项和为Sn,首项为1,q为非零正常数,已知对任意整数n,m,当n>m时,Sn-Sm=qm•Sn-m恒成立.
(1)求数列{an}的通项公式;
(2)证明数列
是递增数列;
(3)是否存在正常数c使得{lg(c-Sn)}为等差数列?若存在,求出常数c的值;若不存在,说明理由.
(1)求数列{an}的通项公式;
(2)证明数列

(3)是否存在正常数c使得{lg(c-Sn)}为等差数列?若存在,求出常数c的值;若不存在,说明理由.
已知命题
数列
的通项公式为
为实数,
,且
恒为等差数列;命题
数列
的通项公式为
时,数列
为递增数列.若
为真,则实数
的取值范围为( )













A.![]() | B.![]() | C.![]() | D.![]() |