- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 根据数列递推公式写出数列的项
- 由递推关系式求通项公式
- + 由递推数列研究数列的有关性质
- 求递推关系式
- 递推数列的实际应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知数列{an}是公差为正数的等差数列,数列{bn}为等比数列,且a1=1,a2=b2,a5=b3,a14=b4.
(1)求数列{an},{bn}的通项公式;
(2)对任意给定的k∈N*,是否存在p,r∈N*(k<p<r)使
成等差数列?若存在,用k分别表示p和r(只要写出一组即可);若不存在,请说明理由.
(1)求数列{an},{bn}的通项公式;
(2)对任意给定的k∈N*,是否存在p,r∈N*(k<p<r)使

已知集合
,集合
且满足:
,
,
与
恰有一个成立.对于
定义
.
(
)若
,
,
,
,求
的值及
的最大值.
(
)取
,
,
,
中任意删去两个数,即剩下的
个数的和为
,求证:
.
(
)对于满足
的每一个集合
,集合
中是否都存在三个不同的元素
,
,
,使得
恒成立,并说明理由.









(







(








(








意大利数学家列昂纳多·斐波那契以兔子繁殖为例,引入“兔子数列”:
,
,即

,若此数列被
整除后的余数构成一个新数列
,则
__________.








