- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念
- 递增数列与递减数列
- 有穷数列和无穷数列
- + 递推数列
- 根据数列递推公式写出数列的项
- 由递推关系式求通项公式
- 由递推数列研究数列的有关性质
- 求递推关系式
- 递推数列的实际应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知数列
,若
为等比数列,则称
具有性质P.
(1)若数列
具有性质P,且
,求
、
的值;
(2)若
,求证:数列
具有性质P;
(3)设
,数列
具有性质P,其中

,若
,求正整数n的取值范围.




(1)若数列





(2)若


(3)设






已知
,
,…,
是由
(
)个整数
,
,…,
按任意次序排列而成的数列,数列
满足
(
).
(1)当
时,写出数列
和
,使得
.
(2)证明:当
为正偶数时,不存在满足
(
)的数列
.
(3)若
,
,…,
是
,
,…,
按从大到小的顺序排列而成的数列,写出
(
),并用含
的式子表示
.
(参考:
.)











(1)当




(2)证明:当




(3)若










(参考:

若数列{an}满足:对任意的n∈N*,只有有限个正整数m使得am<n成立,记这样的m的个数为(an)*,则得到一个新数列{(an)*}.例如,若数列{an}是1,2,3,…n,…,则数列{(an)*}是0,1,2,…,n﹣1,…已知对任意的n∈N*,an=n2,则((a4)*)*=( )
A.8 | B.20 | C.32 | D.16 |
若数列
中存在三项,按一定次序排列构成等比数列,则称
为“等比源数列”。
(1)在无穷数列
中,
,
,求数列
的通项公式;
(2)在(1)的结论下,试判断数列
是否为“等比源数列”,并证明你的结论;
(3)已知无穷数列
为等差数列,且
,
(
),求证:数列
为“等比源数列”.


(1)在无穷数列




(2)在(1)的结论下,试判断数列

(3)已知无穷数列




