- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 判断数列的增减性
- + 确定数列中的最大(小)项
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设正项数列
的前n项和为
,已知
(1)求证:数列
是等差数列,并求其通项公式
(2)设数列
的前n项和为
,且
,若
对任意
都成立,求实数
的取值范围。



(1)求证:数列

(2)设数列






(改编)已知正数数列
的前
项和为
,且满足
;在数列
中,
(1)求数列
和
的通项公式;
(2)设
,数列
的前
项和为
. 若对任意
,存在实数
,使
恒成立,求
的最小值;
(3)记数列
的前
项和为
,证明:
.






(1)求数列


(2)设








(3)记数列




已知等比数列
的公比
,前
项和为
,若
,且
是
与
的等差中项.
(1)求数列
的通项公式;
(2)设
,记数列
的前
项和
,若存在
使
成立,求实数
的取值范围.








(1)求数列

(2)设







给定数列{cn},如果存在常数p、q使得cn+1=pcn+q对任意n∈N*都成立,则称{cn}为“M类数列”.
(1)若{an}是公差为d的等差数列,判断{an}是否为“M类数列”,并说明理由;
(2)若{an}是“M类数列”且满足:a1=2,an+an+1=3•2n.
①求a2、a3的值及{an}的通项公式;
②设数列{bn}满足:对任意的正整数n,都有a1bn+a2bn﹣1+a3bn﹣2+…+anb1=3•2n+1﹣4n﹣6,且集合M={n|
≥λ,n∈N*}中有且仅有3个元素,试求实数λ的取值范围.
(1)若{an}是公差为d的等差数列,判断{an}是否为“M类数列”,并说明理由;
(2)若{an}是“M类数列”且满足:a1=2,an+an+1=3•2n.
①求a2、a3的值及{an}的通项公式;
②设数列{bn}满足:对任意的正整数n,都有a1bn+a2bn﹣1+a3bn﹣2+…+anb1=3•2n+1﹣4n﹣6,且集合M={n|

对于无穷数列
,
,若
,
,则称
是
的“收缩数列”.其中
,
分别表示
中的最大数和最小数.已知
为无穷数列,其前
项和为
,数列
是
的“收缩数列”.
(1)若
,求
的前
项和;
(2)证明:
的“收缩数列”仍是
;
(3)若
且
,
,求所有满足该条件的
.














(1)若



(2)证明:


(3)若




已知正项等比数列
的前
项和为
,首项
,且
,正项数列
满足
,
.
(1)求数列
,
的通项公式;
(2)记
,是否存在正整数
,使得对任意正整数
,
恒成立?若存在,求正整数
的最小值,若不存在,请说明理由.








(1)求数列


(2)记





