- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- + 数列的概念与简单表示法
- 数列的概念
- 递增数列与递减数列
- 有穷数列和无穷数列
- 递推数列
- 等差数列
- 等比数列
- 数列求和
- 数列的综合应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
由下面四个图形中的点数分别给出了四个数列的前四项,将每个图形的层数增加可得到这四个数列的后继项.按图中多边形的边数依次称这些数列为“三角形数列”、“四边形数列”…,将构图边数增加到n可得到“n边形数列”,记它的第r项为P(n,r).

(1)求使得P(3,r)>36的最小r的取值;
(2)试推导P(n,r)关于n、r的解析式;
(3)是否存在这样的“n边形数列”,它的任意连续两项的和均为完全平方数.若存在,指出所有满足条件的数列,并证明你的结论;若不存在,请说明理由.

(1)求使得P(3,r)>36的最小r的取值;
(2)试推导P(n,r)关于n、r的解析式;
(3)是否存在这样的“n边形数列”,它的任意连续两项的和均为完全平方数.若存在,指出所有满足条件的数列,并证明你的结论;若不存在,请说明理由.
函数
的定义域为R,数列
满足
(
且
).
(Ⅰ)若数列
是等差数列,
,且
(
为非零常数,
且
),求
的值;
(Ⅱ)若
,
,
,数列
的前
项和为
,对于给定的正整数
,如果
的值与
无关,求
的值.





(Ⅰ)若数列







(Ⅱ)若










已知数列
的前
项和
满足
,数列
满足
.
Ⅰ
求数列
和数列
的通项公式;
Ⅱ
令
,若
对于一切的正整数
恒成立,求实数
的取值范围;
Ⅲ
数列
中是否存在
,且
使
,
,
成等差数列?若存在,求出
的值;若不存在,请说明理由.

























对于项数为m的有穷数列数集
,记
(k=1,2,…,m),即
为
中的最大值,并称数列
是
的控制数列.如1,3,2,5,5的控制数列是1,3,3,5,5.
(1)若各项均为正整数的数列
的控制数列为2,3,4,5,5,写出所有的
;
(2)设
是
的控制数列,满足
(C为常数,k=1,2,…,m).
求证:
(k=1,2,…,m);
(3)设m=100,常数
.若
,
是
的控制数列,
求
.






(1)若各项均为正整数的数列


(2)设



求证:

(3)设m=100,常数




求
