- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- + 数列的概念与简单表示法
- 数列的概念
- 递增数列与递减数列
- 有穷数列和无穷数列
- 递推数列
- 等差数列
- 等比数列
- 数列求和
- 数列的综合应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若数列
前
项和为
(1)若首项
,且对于任意的正整数
均有
,(其中
为正实常数),试求出数列
的通项公式.
(2)若数列
是等比数列,公比为
,首项为
,
为给定的正实数,满足:①
,且
②对任意的正整数
,均有
;试求函数
的最大值(用
和
表示)



(1)若首项





(2)若数列











著名的斐波那契数列,因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故还称为“兔子数列”.它满足:
,
且
,则
______.




大衍数列,于我国的《乾坤谱》,是世界数学史上最古老的数列,主要用于解释中国传统文化中的太极衍生原理.其前11项依次是:0,2,4,8,12,18,24,32,40,50,60,则大衍数列的第41项为________.