- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 正、余弦定理在几何中的应用
- + 正、余弦定理的实际应用
- 距离测量问题
- 高度测量问题
- 角度测量问题
- 正、余弦定理的其他应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
甲船在岛B的正南A处,AB="10" km,甲船以每小时4 km的速度向正北航行,同时,乙船自B出发以每小时6 km的速度向北偏东60°的方向驶去.当甲、乙两船相距最近时,它们所航行的时间是_______h.
如图,线段AB,CD分别表示甲、乙两楼,AB⊥BD,CD⊥BD,从甲楼顶部A处测得乙楼顶部C处的仰角为
=30°,测得乙楼底部D的俯角
=60°,已知甲楼的高AB=24米,则乙楼的高
__________米.




如图,某工程中要将一长为100 m、倾斜角为75°的斜坡改造成倾斜角为30°的斜坡,并保持坡高不变,则坡底需加长


A.100![]() | B.100![]() | C.50(![]() | D.200 m |
如图,海中有一小岛B,周围3.8海里内有暗礁.一军舰从A地出发由西向东航行,望见小岛B在北偏东75°,航行8海里到达C处,望见小岛B在北偏东60°.若此舰不改变航行的方向继续前进,则此舰____________触礁的危险.(填“有”或“没有”)

如图,在路边安装路灯,路宽为
,灯柱
长为10米,灯杆
长为1米,且灯杆与灯柱成
角,路灯采用圆锥形灯罩,其轴截面的顶角为
,灯罩轴线
与灯杆
垂直.若灯罩截面的两条母线所在直线一条恰好经过点
,另一条与地面的交点为
.则该路灯照在路面上的宽度
的长是_________米.











如图所示,已知A、B、C是一条直路上的三点,AB与BC各等于1 km,从三点分别遥望塔M,在A处看见塔在北偏东45°方向,在B处看塔在正东方向,在点C处看见塔在南偏东60°方向,求塔到直路ABC的最短距离.

甲船在A处.乙船在甲船正南方向距甲船20海里的B处,乙船以每小时10海里的速度向正北方向行驶,而甲船同时以每小时8海里的速度由A处向南偏西60o方向行驶,问经过多少小时后,甲.乙两船相距最近?
要测量河岸之间的距离(河的两岸可视为平行),由于受地理条件和测量工具的限制,可采用如下办法:如图所示,在河的一岸边选取A、B两点,观察对岸的点C,测得∠CAB=45°,∠CBA=75°,且AB=120 m,由此可得河宽为(精确到1 cm)( )


A.170 m | B.98 m |
C.95 m | D.86 m |