- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 距离测量问题
- + 高度测量问题
- 角度测量问题
- 正、余弦定理的其他应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
泉城广场上矗立着的“泉标”,成为泉城济南的标志和象征.为了测量“泉标”高度,某同学在“泉标”的正西方向的点A处测得“泉标”顶端的仰角为
,沿点A向北偏东
前进100 m到达点B,在点B处测得“泉标”顶端的仰角为
,则“泉标”的高度为( )



A.50 m | B.100 m | C.120 m | D.150 m |
如图,某校一角读书亭
的高为
,在该读书亭的正东方向有一个装饰灯塔
,在它们之间的地面点
(
、
、
三点共线)处测得读书亭顶部
与灯塔顶部
的仰角分别是
和
,在读书亭顶部
测得灯塔顶部
的仰角为
,则灯塔
的高为______
.

















如图,为了测量山坡上灯塔CD的高度,某人从高为h=40的楼AB的底部A处和楼顶B处分别测得仰角β=60°,α=30°,若山坡高为a=35,则灯塔的高度是( )


A.20 | B.25 | C.![]() | D.30 |
如图,要测量山顶上的电视塔FG的高度,已知山的西面有一栋楼AC(该楼的高度低于山的高度).试设计在楼AC上测山顶电视塔高度的测量、计算方案.

某新建的信号发射塔的高度为
,且设计要求为:29米
29.5米.为测量塔高是否符合要求,
先取与发射塔底部
在同一水平面内的两个观测点
,测得
,
,
米,并在点
处的正上方
处观测发射塔顶部
的仰角为30°,且
米,则发射塔高


先取与发射塔底部










A.![]() | B.![]() |
C.![]() | D.![]() |
为测某塔
的高度,在一幢与塔
相距30m的楼的楼顶C处测得塔顶A的仰角为30°,测得塔基B的俯角为45°,则塔
的高度为________m.



如图,测量河对岸的塔高AB时可以选与塔底B在同一水平面内的两个测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30,并在点C测得塔顶A的仰角为60°,则塔高AB等于( )


A.![]() | B.![]() | C.![]() | D.![]() |