- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 任意角和弧度制
- 任意角的三角函数
- 同角三角函数的基本关系
- 三角函数的诱导公式
- 三角函数的图象与性质
- 函数y=Asin(ωx+φ)的图象变换
- + 三角函数的应用
- 几何中的三角函数模型
- 三角函数在生活中的应用
- 三角函数在物理学中的应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,某游乐场有一个半径为50米的摩天轮,该摩天轮的圆心
距离地面52米,摩天轮逆时针匀速转动,每转动一圈需要
分钟.若游客从最低点处登上摩天轮,从摩天轮开始转动计时.

(I)求游客与地面的距离
(米)与摩天轮转动时间
(分)的函数关系式;
(Ⅱ)摩天轮转动一圈的过程中,游客的高度在距地面77米及以上的时间不少于4分钟,求
的最小值.



(I)求游客与地面的距离


(Ⅱ)摩天轮转动一圈的过程中,游客的高度在距地面77米及以上的时间不少于4分钟,求

一半径为
的水轮如图所示,水轮圆心
距离水面
;已知水轮按逆时针做匀速转动,每
转一圈,如果当水轮上点
从水中浮现时(图中点
)开始计算时间.

(1)以水轮所在平面与水面的交线为
轴,以过点
且与水面垂直的直线为
轴,建立如图所示的直角坐标系,将点
距离水面的高度
表示为时间
的函数;
(2)点
第一次到达最高点大约要多长时间?







(1)以水轮所在平面与水面的交线为






(2)点

据监测,在海滨某城市附近的海面有一台风. 台风中心位于城市
的东偏南
方向、距离城市
的海面
处,并以
的速度向西偏北
方向移动(如图示).如果台风侵袭范围为圆形区域,半径
,台风移动的方向与速度不变,那么该城市受台风侵袭的时长为_____ .








小明同学有两段如图一所示的长方形木块(长度足够),现小明要在两块长方形的一端分别截去△ABC与△DEF,使其拼接成如图二所示的一个角,则小明在第一段长方形木块截掉的∠ABC的余弦cos∠ABC=( )


A.![]() | B.![]() | C.![]() | D.![]() |
水车是一种利用水流动力进行灌溉的工具,是人类一项古老的发明,也是人类利用自然和改造自然的象征.如图是一个水车的示意图,已知水车逆时针匀速旋转一圈的时间是80秒,半径为3米,水车中心(即圆心)距水面1.5米.若以水面为
轴,圆心到水面的垂线为
轴建立直角坐标系,水车的一个水斗从出水面点
处开始计时,经过
秒后转到
点的位置,则点
到水面的距离
与时间
的函数关系式为( )










A.![]() | B.![]() |
C.![]() | D.![]() |
如图,有一块扇形草地OMN,已知半径为R,
,现要在其中圈出一块矩形场地ABCD作为儿童乐园使用,其中点A、B在弧MN上,且线段AB平行于线段MN

(1)若点A为弧MN的一个三等分点,求矩形ABCD的面积S;
(2)当A在何处时,矩形ABCD的面积S最大?最大值为多少?


(1)若点A为弧MN的一个三等分点,求矩形ABCD的面积S;
(2)当A在何处时,矩形ABCD的面积S最大?最大值为多少?
节能环保日益受到人们的重视,水污染治理也已成为“十三五”规划的重要议题.某地有三家工厂,分别位于矩形
的两个顶点
、
及
的中点
处,
,
,为了处理三家工厂的污水,现要在该矩形区域上(含边界),且与
、
等距离的一点
处,建造一个污水处理厂,并铺设三条排污管道
、
、
.设
∠BAO=x(弧度),排污管道的总长度为
.

(1)将
表示为
的函数;
(2)试确定
点的位置,使铺设的排污管道的总长度最短,并求总长度的最短公里数(精确到
).
















(1)将


(2)试确定


如图,正方形
的边长为2,
为
的中点,射线
从
出发,绕着点
顺时针方向旋转至
,在旋转的过程中,记
为
,
所经过的在正方
形
内的区域(阴影部分)的面积
,那么对于函数
有以下三个结论:
①
;② 对任意
,都有
;
③ 对任意
,且
,都有
;
其中所有正确结论的序号是_______ ;











形



①



③ 对任意



其中所有正确结论的序号是
某海域内有一孤岛,岛四周的海平面(视为平面)上有一浅水区(含边界),其边界是长轴长为2a,短轴长为2b的椭圆,已知岛上甲、乙导航灯的海拔高度分别为h1、h2,且两个导航灯在海平面上的投影恰好落在椭圆的两个焦点上,现有船只经过该海域(船只的大小忽略不计),在船上测得甲、乙导航灯的仰角分别为θ1、θ2,那么船只已进入该浅水区的判别条件是 .

某小区欲利用一块直角三角形空地(如图
)建一个正三角形(如图
)健身器材休闲场地,经测量
,
,
.若正三角形
的顶点在
的三条边界线上,则该健身器材休闲场地面积的最小值为________
.








