- 集合与常用逻辑用语
- 函数与导数
- 利润最大问题
- + 面积、体积最大问题
- 成本最小问题
- 用料最省问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,有一块抛物线形状的钢板,计划将此钢板切割成等腰梯形
的形状,使得
都落在抛物线上,点
关于抛物线的轴对称,且
,抛物线的顶点到底边的距离是
,记
,梯形面积为
.

(1)以抛物线的顶点为坐标原点,其对称轴为
轴建立坐标系,使抛物线开口向下,求出该抛物线的方程;
(2)求面积
关于
的函数解析式,并写出其定义域;
(3)求面积
的最大值.








(1)以抛物线的顶点为坐标原点,其对称轴为

(2)求面积


(3)求面积

如图,实线部分的月牙形公园是由圆P上的一段优弧和圆Q上的一段劣弧围成,圆P和圆Q的半径都是2km,点P在圆Q上,现要在公园内建一块顶点都在圆P上的多边形活动场地.


(1)如图甲,要建的活动场地为△RST,求场地的最大面积;
(2)如图乙,要建的活动场地为等腰梯形ABCD,求场地的最大面积.
扇形














已知双曲线
:
和圆
:
(其中原点
为圆心),过双曲线上一点
引圆
的两条切线,切点分别为
、
.
(1)若双曲线
上存在点
,使得
,求双曲线离心率
的取值范围;
(2)求直线
的方程;
(3)求三角形
面积的最大值.









(1)若双曲线




(2)求直线

(3)求三角形

某地政府为科技兴市,欲将如图所示的一块不规则的非农业用地规划建成一个矩形的高科技工业园区.已知
⊥
,
∥
,且
,
,曲线段
是以点
为顶点且开口向上的抛物线的一段.如果要使矩形的相邻两边分别落
在
,
上,且一个顶点落在曲线段
上.问:应如何规划才能使矩形工业园区的用地面积最大?并求出最大的用地面积(精确到
).








在




如图边长为2的正方形花园的一角是以A为中心,1为半径的扇形水池.现需在其余部分设计一个矩形草坪PNCQ,其中P是水池边上任意一点,点N、Q分别在边BC和CD上,设∠PAB为θ.
(I)用θ表示矩形草坪PNCQ的面积,并求其最小值;
(II)求点P到边BC和AB距离之比
的最小值.
(I)用θ表示矩形草坪PNCQ的面积,并求其最小值;
(II)求点P到边BC和AB距离之比


从边长为
的正方形铁皮的四个角各截去一个边长为
的小正方形,再将四边向上折起,做成一个无盖的长方体铁盒,且要求长方体的高度
与底面正方形的边长的比不超过常数
.
问:(1)求长方体的容积
关于
的函数表达式;(2)
取何值时,长方体的容积
有最大值?




问:(1)求长方体的容积



