刷题首页
题库
高中数学
题干
如图,实线部分的月牙形公园是由圆
P
上的一段优弧和圆
Q
上的一段劣弧围成,圆
P
和圆
Q
的半径都是2km,点
P
在圆
Q
上,现要在公园内建一块顶点都在圆
P
上的多边形活动场地.
(1)如图甲,要建的活动场地为△
RST
,求场地的最大面积;
(2)如图乙,要建的活动场地为等腰梯形
ABCD
,求场地的最大面积.
上一题
下一题
0.99难度 解答题 更新时间:2011-04-07 08:46:27
答案(点此获取答案解析)
同类题1
如图,某机械厂要将长
,宽
的长方形铁皮
进行裁剪.已知点
为
的中点,点
在边
上,裁剪时先将四边形
沿直线
翻折到
处(点
分别落在直线
下方点
处,
交边
于点
),再沿直线
裁剪.
(1)当
时,试判断四边形
的形状,并求其面积;
(2)若使裁剪得到的四边形
面积最大,请给出裁剪方案,并说明理由.
同类题2
某种儿童型防蚊液储存在一个容器中,该容器由两个半球和一个圆柱组成,(其中上半球是容器的盖子,防蚊液储存在下半球及圆柱中),容器轴截面如图所示,两头是半圆形,中间区域是矩形
,其外周长为
毫米.防蚊液所占的体积为圆柱体积和一个半球体积之和.假设
的长为
毫米.(注:
,其中
为球半径,
为圆柱底面积,
为圆柱的高)
(1)求容器中防蚊液的体积
关于
的函数关系式;
(2)如何设计
与
的长度,使得
最大?
同类题3
设向气球内以每秒100立方厘米的速度注入气体,假设气体的压力不变,那么当气球半径为20厘米时,气球半径增大的速度为每秒
▲
厘米
同类题4
工厂需要围建一个面积为512
的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁.我们知道,砌起的新墙的总长度
(单位:
)是利用原有墙壁长度
(单位:
)的函数.
(1)写出
关于
的函数解析式,确定
的取值范围.
(2)堆料场的长、宽之比为多少时,需要砌起的新墙用的材料最省?
同类题5
图1是一段半圆柱形水渠的直观图,其横断面如图2所示,其中C为半圆弧
的中点,渠宽AB为2米.
(1)当渠中水深CD为0.4米时,求水面的宽度;
(2)若把这条水渠改挖(不准填土)成横断面为等腰梯形的水渠,且使渠的底面与地面平行,则当改挖后的水渠底宽为多少时,所挖出的土量最少?
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题