- 集合与常用逻辑用语
- 函数与导数
- 利润最大问题
- + 面积、体积最大问题
- 成本最小问题
- 用料最省问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
2109年11月2日,中国药品监督管理局批准了治疗阿尔茨海默病(老年痴呆症)新药GV-971的上市申请,这款新药由我国科研人员研发,我国拥有完全知识产权.据悉,该款药品为胶囊,从外观上看是两个半球和一个圆柱组成,其中上半球是胶囊的盖子,粉状药物储存在圆柱及下半球中.胶囊轴截面如图所示,两头是半圆形,中间区域是矩形
,其周长为50毫米,药物所占的体积为圆柱体积和一个半球体积之和.假设
的长为
毫米.(注:
,
,其中
为球半径,
为圆柱底面积,
为圆柱的高)

(1)求胶囊中药物的体积
关于
的函数关系式;
(2)如何设计
与
的长度,使得
最大?









(1)求胶囊中药物的体积


(2)如何设计



已知P,A,B,C是半径为2的球面上的点,PA=PB=PC=2,
,点B在AC上的射影为D,则三棱锥
体积的最大值为( )


A.![]() | B.![]() | C.![]() | D.![]() |
现拟建一个粮仓,如图1所示,粮仓的轴截而如图2所示,ED=EC,AD
BC,BC⊥AB,EF⊥AB,CD交EF于点G,EF=FC=10m.

(1)设∠CFB=θ,求粮仓的体积关于θ的函数关系式;
(2)当sinθ为何值时,粮仓的体积最大?


(1)设∠CFB=θ,求粮仓的体积关于θ的函数关系式;
(2)当sinθ为何值时,粮仓的体积最大?
某地拟规划种植一批芍药,为了美观,将种植区域(区域Ⅰ)设计成半径为
的扇形
,中心角
.为方便观赏,增加收入,在种植区域外围规划观赏区(区域Ⅱ)和休闲区(区域Ⅲ),并将外围区域按如图所示的方案扩建成正方形
,其中点
,
分别在边
和
上.已知种植区、观赏区和休闲区每平方千米的年收入分别是10万元、20万元、20万元.

(1)要使观赏区的年收入不低于5万元,求
的最大值;
(2)试问:当
为多少时,年总收入最大?









(1)要使观赏区的年收入不低于5万元,求

(2)试问:当

某房地产商建有三栋楼宇
,三楼宇间的距离都为2千米,拟准备在此三楼宇围成的区域
外建第四栋楼宇
,规划要求楼宇
对楼宇
,
的视角为
,如图所示,假设楼宇大小高度忽略不计.

(1)求四栋楼宇围成的四边形区域
面积的最大值;
(2)当楼宇
与楼宇
,
间距离相等时,拟在楼宇
,
间建休息亭
,在休息亭
和楼宇
,
间分别铺设鹅卵石路
和防腐木路
,如图,已知铺设鹅卵石路、防腐木路的单价分别为
,
(单位:元千米,
为常数).记
,求铺设此鹅卵石路和防腐木路的总费用的最小值.








(1)求四栋楼宇围成的四边形区域

(2)当楼宇















现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥
,下部分的形状是正四棱柱
(如图所示),并要求正四棱柱的高
是正四棱锥的高
的4倍.

(1)若
则仓库的容积是多少?
(2)若正四棱锥的侧棱长为
,则当
为多少时,仓库的容积最大?





(1)若

(2)若正四棱锥的侧棱长为


图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构成,其中前后两坡屋面ABFE和CDEF是全等的等腰梯形,左右两坡屋面EAD和FBC是全等的三角形.点F在平面ABCD和BC上的射影分别为H,M.已知HM = 5 m,BC = 10 m,梯形ABFE的面积是△FBC面积的2.2倍.设∠FMH =
.
(1)求屋顶面积S关于
的函数关系式;
(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k(k为正的常数),下部主体造价与其 高度成正比,比例系数为16 k.现欲造一栋上、下总高度为6 m的别墅,试问:当
为何值时,总造价最低? 


(1)求屋顶面积S关于

(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k(k为正的常数),下部主体造价与其 高度成正比,比例系数为16 k.现欲造一栋上、下总高度为6 m的别墅,试问:当


某公司设计如图所示的环状绿化景观带,该景观带的内圈由两条平行线段(图中的
)和两个半圆构成,设
,且
.

(1)若内圈周长为
,则
取何值时,矩形
的面积最大?
(2)若景观带的内圈所围成区域的面积为
,则
取何值时,内圈周长最小?




(1)若内圈周长为



(2)若景观带的内圈所围成区域的面积为

