2109年11月2日,中国药品监督管理局批准了治疗阿尔茨海默病(老年痴呆症)新药GV-971的上市申请,这款新药由我国科研人员研发,我国拥有完全知识产权.据悉,该款药品为胶囊,从外观上看是两个半球和一个圆柱组成,其中上半球是胶囊的盖子,粉状药物储存在圆柱及下半球中.胶囊轴截面如图所示,两头是半圆形,中间区域是矩形,其周长为50毫米,药物所占的体积为圆柱体积和一个半球体积之和.假设的长为毫米.(注:,其中为球半径,为圆柱底面积,为圆柱的高)

(1)求胶囊中药物的体积关于的函数关系式;
(2)如何设计的长度,使得最大?
当前题号:1 | 题型:解答题 | 难度:0.99
已知P,A,B,C是半径为2的球面上的点,PA=PB=PC=2,,点B在AC上的射影为D,则三棱锥体积的最大值为(  )
A.B.C.D.
当前题号:2 | 题型:单选题 | 难度:0.99
已知三棱锥满足,则该三棱锥体积的最大值为________.
当前题号:3 | 题型:填空题 | 难度:0.99
现拟建一个粮仓,如图1所示,粮仓的轴截而如图2所示,EDECADBCBCABEFABCDEF于点GEFFC=10m

(1)设∠CFBθ,求粮仓的体积关于θ的函数关系式;
(2)当sinθ为何值时,粮仓的体积最大?
当前题号:4 | 题型:解答题 | 难度:0.99
将长为的铁丝截成12段,搭成一个正四棱柱的骨架,以此骨架做成一个正四棱柱容器,则此容器的最大容积为(   )
A.B.C.D.
当前题号:5 | 题型:单选题 | 难度:0.99
某地拟规划种植一批芍药,为了美观,将种植区域(区域Ⅰ)设计成半径为的扇形,中心角.为方便观赏,增加收入,在种植区域外围规划观赏区(区域Ⅱ)和休闲区(区域Ⅲ),并将外围区域按如图所示的方案扩建成正方形,其中点分别在边上.已知种植区、观赏区和休闲区每平方千米的年收入分别是10万元、20万元、20万元.

(1)要使观赏区的年收入不低于5万元,求的最大值;
(2)试问:当为多少时,年总收入最大?
当前题号:6 | 题型:解答题 | 难度:0.99
某房地产商建有三栋楼宇,三楼宇间的距离都为2千米,拟准备在此三楼宇围成的区域外建第四栋楼宇,规划要求楼宇对楼宇的视角为,如图所示,假设楼宇大小高度忽略不计.

(1)求四栋楼宇围成的四边形区域面积的最大值;
(2)当楼宇与楼宇间距离相等时,拟在楼宇间建休息亭,在休息亭和楼宇间分别铺设鹅卵石路和防腐木路,如图,已知铺设鹅卵石路、防腐木路的单价分别为(单位:元千米,为常数).记,求铺设此鹅卵石路和防腐木路的总费用的最小值.
当前题号:7 | 题型:解答题 | 难度:0.99
现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥,下部分的形状是正四棱柱(如图所示),并要求正四棱柱的高是正四棱锥的高的4倍.

(1)若则仓库的容积是多少?
(2)若正四棱锥的侧棱长为,则当为多少时,仓库的容积最大?
当前题号:8 | 题型:解答题 | 难度:0.99
图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构成,其中前后两坡屋面ABFE和CDEF是全等的等腰梯形,左右两坡屋面EAD和FBC是全等的三角形.点F在平面ABCD和BC上的射影分别为H,M.已知HM = 5 m,BC = 10 m,梯形ABFE的面积是△FBC面积的2.2倍.设∠FMH =  
(1)求屋顶面积S关于的函数关系式; 
(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k(k为正的常数),下部主体造价与其 高度成正比,比例系数为16 k.现欲造一栋上、下总高度为6 m的别墅,试问:当为何值时,总造价最低?
当前题号:9 | 题型:解答题 | 难度:0.99
某公司设计如图所示的环状绿化景观带,该景观带的内圈由两条平行线段(图中的)和两个半圆构成,设,且.

(1)若内圈周长为,则取何值时,矩形的面积最大?
(2)若景观带的内圈所围成区域的面积为,则取何值时,内圈周长最小?
当前题号:10 | 题型:解答题 | 难度:0.99