刷题首页
题库
高中数学
题干
现要制作一个圆锥形漏斗, 其母线长为t,要使其体积最大, 其高为( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2011-04-16 10:36:13
答案(点此获取答案解析)
同类题1
如果圆柱的轴截面周长为定值4,则圆柱体积的最大值为( )
A.
B.
C.
D.
同类题2
用长为18米的篱笆借助一墙角围成一个矩形
(如图所示),在点
处有一棵树(忽略树的直径)距两墙的距离分别为
米和
米,现需要将此树圈进去,设矩形
的面积为
(平方米),长
为
(米).
(1)设
,求
的解析式并指出其定义域;
(2)试求
的最小值
.
同类题3
如图,在矩形
与扇形
拼接而成的平面图形中,
,
,
.点
在弧
上,
在
上,
.设
,则当平面区域
(阴影部份)的面积取到最大值时,
_______.
同类题4
如图,圆形纸片的圆心为
,半径为
,该纸片上的正方形
的中心为
,
为圆
上的点,
分别是以
为底边的等腰三角形,沿虚线剪开后,分别以
为折痕折起
,使
重合得到一个四棱锥,则该四棱锥的体积的最大值为_______.
同类题5
如图,有一块半圆形的空地,政府计划在空地上建一个矩形的市民活动广场ABCD及矩形的停车场EFGH,剩余的地方进行绿化,其中半圆的圆心为O,半径为r,矩形的一边AB在直径上,点C,D,G,H在圆周上,E,F在边CD上,且∠BOG=60°,设∠BOC=
.
(1)记市民活动广场及停车场的占地总面积为
,求
的表达式;
(2)当cos
为何值时,可使市民活动广场及停车场的占地总面积最大.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题
锥体体积的有关计算