刷题首页
题库
高中数学
题干
已知双曲线
:
和圆
:
(其中原点
为圆心),过双曲线上一点
引圆
的两条切线,切点分别为
、
.
(1)若双曲线
上存在点
,使得
,求双曲线离心率
的取值范围;
(2)求直线
的方程;
(3)求三角形
面积的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2011-04-25 08:21:49
答案(点此获取答案解析)
同类题1
(山东省烟台市2018届适应性练习(二))如图,圆形纸片的圆心为
,半径为
,该纸片上的正方形
的中心为
,
为圆
上的点,
分别是以
为底边的等腰三角形,沿虚线剪开后,分别以
为折痕折起
,使
重合得到一个四棱锥,则该四棱锥的体积的最大值为_______.
同类题2
如图,由
围成的曲边三角形,在曲线
弧上求一点
,使得过
所作的
的切线
与
围城的三角形
的面积最大,并求得最大值.
同类题3
如图,已知正四棱柱
和半径为
的半球O,底面ABCD在半球O底面所在平面上,
,
,
,
四点均在球面上,则该正四棱柱的体积的最大值为______.
同类题4
(题文)某商场为促销要准备一些正三棱锥形状的装饰品,用半径为
的圆形包装纸包装.要求如下:正三棱锥的底面中心与包装纸的圆心重合,包装纸不能裁剪,沿底边向上翻折,其边缘恰好达到三棱锥的顶点,如图所示.设正三棱锥的底面边长为
,体积为
.
(1)求
关于
的函数关系式;
(2)在所有能用这种包装纸包装的正三棱锥装饰品中,
的最大值是多少?并求此时
的值.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题
切点弦及其方程