- 集合与常用逻辑用语
- 函数与导数
- 利润最大问题
- + 面积、体积最大问题
- 成本最小问题
- 用料最省问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
现有一段长为
的铁丝,要把它围成一个底面一边长为另一边长2倍的长方体形状的框架,当长方体体积最大时,底面的较短边长是( )

A.![]() | B.![]() | C.![]() | D.![]() |
如图所示,在一半径等于1千米的圆弧及直线段道路
围成的区域内计划建一条商业街,其起点和终点均在道路
上,街道由两条平行于对称轴l且关于l对称的两线段EF、CD,及夹在两线段EF、CD间的弧组成.若商业街在两线段EF、CD上收益为每千米2a元,在两线段EF、CD间的弧上收益为每千米a元.已知
,设
,
(1)将商业街的总收益
表示为
的函数;
(2)求商业街的总收益的最大值.




(1)将商业街的总收益


(2)求商业街的总收益的最大值.

如图,有一边长为6的正方形铁片,在铁片的四角各截去一个边长为
的小正方形后,沿图中虚线部分折起,做成一个无盖方盒.



(1)试用表示方盒的容积
,并写出
的范围;
(2)求方盒容积的最大值及相应
的值.