- 集合与常用逻辑用语
- 函数与导数
- 利润最大问题
- + 面积、体积最大问题
- 成本最小问题
- 用料最省问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分13分)如图,某工厂生产的一种无盖纸筒为圆锥形,现一客户订制该圆锥纸筒,并要求该圆锥纸筒的容积为π立方分米.设圆锥纸筒底面半径为r分米,高为h分米.

(1)求出r与h满足的关系式;
(2)工厂要求制作该纸筒的材料最省,求最省时
的值.

(1)求出r与h满足的关系式;
(2)工厂要求制作该纸筒的材料最省,求最省时

(本小题满分14分)某商场为促销要准备一些正三棱锥形状的装饰品,用半径为
的圆形包装纸包装.要求如下:正三棱锥的底面中心与包装纸的圆心重合,包装纸不能裁剪,沿底边向上翻折,其边缘恰好达到三棱锥的顶点,如图所示.设正三棱锥的底面边长为
,体积为
.

(1)求
关于
的函数关系式;
(2)在所有能用这种包装纸包装的正三棱锥装饰品中,
的最大值是多少?并求此时
的值.




(1)求


(2)在所有能用这种包装纸包装的正三棱锥装饰品中,


图1是一段半圆柱形水渠的直观图,其横断面如图2所示,其中C为半圆弧
的中点,渠宽AB为2米.

(1)当渠中水深CD为0.4米时,求水面的宽度;
(2)若把这条水渠改挖(不准填土)成横断面为等腰梯形的水渠,且使渠的底面与地面平行,则当改挖后的水渠底宽为多少时,所挖出的土量最少?


(1)当渠中水深CD为0.4米时,求水面的宽度;
(2)若把这条水渠改挖(不准填土)成横断面为等腰梯形的水渠,且使渠的底面与地面平行,则当改挖后的水渠底宽为多少时,所挖出的土量最少?
某宾馆在装修时,为了美观,欲将客房的窗户设计成半径为
的圆形,并用四根木条将圆分成如图所示的9个区域,其中四边形
为中心在圆心的矩形,现计划将矩形
区域设计为可推拉的窗口.

(1)若窗口
为正方形,且面积大于
(木条宽度忽略不计),求四根木条总长的取值范围;
(2)若四根木条总长为
,求窗口
面积的最大值.




(1)若窗口


(2)若四根木条总长为


(题文)某商场为促销要准备一些正三棱锥形状的装饰品,用半径为
的圆形包装纸包装.要求如下:正三棱锥的底面中心与包装纸的圆心重合,包装纸不能裁剪,沿底边向上翻折,其边缘恰好达到三棱锥的顶点,如图所示.设正三棱锥的底面边长为
,体积为
.

(1)求
关于
的函数关系式;
(2)在所有能用这种包装纸包装的正三棱锥装饰品中,
的最大值是多少?并求此时
的值.







(1)求


(2)在所有能用这种包装纸包装的正三棱锥装饰品中,


在正三棱锥
内,有一半球,其底面与正三棱锥的底面重合,且与正正三棱锥的三个侧面都相切,若半球的半径为
,则正三棱锥的体积最小时,其高等于______.


在正三棱锥V—ABC内,有一半球,其底面与正三棱锥的底面重合,且与正三棱锥的三个侧面都相切,若半球的半径为2,则正三棱锥的体积最小时,其高等于__________.
用一个半径为
的钢质球通过切削加工成一个正六棱柱,为了充分利用材料,要使加工的正六棱柱体积最大,则最大体积为_____________.
